Spectral Theory of Operator Measures in Hilbert Space

نویسندگان

  • M. M. MALAMUD
  • S. M. MALAMUD
چکیده

In §2 the spaces L2(Σ,H) are described; this is a solution of a problem posed by M. G. Krĕın. In §3 unitary dilations are used to illustrate the techniques of operator measures. In particular, a simple proof of the Năımark dilation theorem is presented, together with an explicit construction of a resolution of the identity. In §4, the multiplicity function NΣ is introduced for an arbitrary (nonorthogonal) operator measure in H. The description of L2(Σ, H) is employed to show that this notion is well defined. As a supplement to the Năımark dilation theorem, a criterion is found for an orthogonal measure E to be unitarily equivalent to the minimal (orthogonal) dilation of the measure Σ. In §5 it is proved that the set ΩΣ of all principal vectors of an arbitrary operator measure Σ in H is massive, i.e., it is a dense Gδ-set in H. In particular, it is shown that the set of principal vectors of a selfadjoint operator is massive in any cyclic subspace. In §6, the Hellinger types are introduced for an arbitrary operator measure; it is proved that subspaces realizing these types exist and form a massive set. In §7, a model of a symmetric operator in the space L2(Σ, H) is studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Spectral Theory of Discrete Processes

We offer a spectral analysis for a class of transfer operators. These transfer operators arise for a wide range of stochastic processes, ranging from random walks on infinite graphs to the processes that govern signals and recursive wavelet algorithms; even spectral theory for fractal measures. In each case, there is an associated class of harmonic functions which we study. And in addition, we ...

متن کامل

Singular Bilinear Integrals in Quantum Physics

Bilinear integrals of operator-valued functions with respect to spectral measures and integrals of scalar functions with respect to the product of two spectral measures arise in many problems in scattering theory and spectral analysis. Unfortunately, the theory of bilinear integration with respect to a vector measure originating from the work of Bartle cannot be applied due to the singular vari...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Some Properties of Continuous $K$-frames in Hilbert Spaces

The theory of  continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory.  The $K$-frames were  introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of  $K$-frames, there are many differences between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004